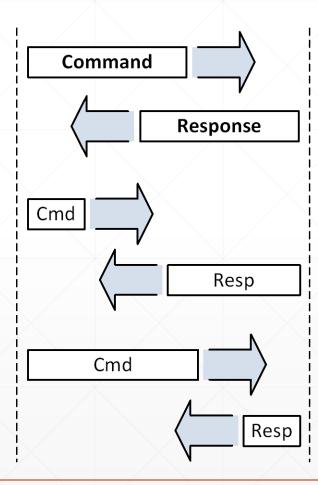
Device Management Schnittstellen

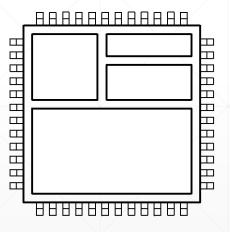
Referat von Peter Voser Embedded Development GmbH

Device Management ist...

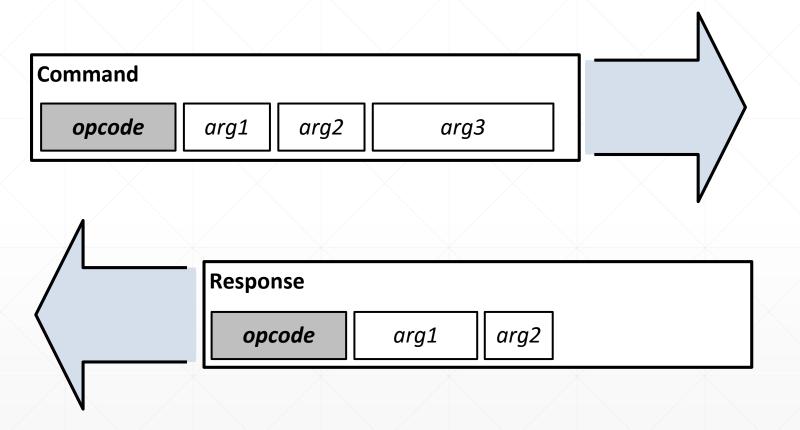

- Gerätesteuerung
- Parametrisierung
- Zugang zu internen Messgrössen und Zuständen
- Software Upgrade

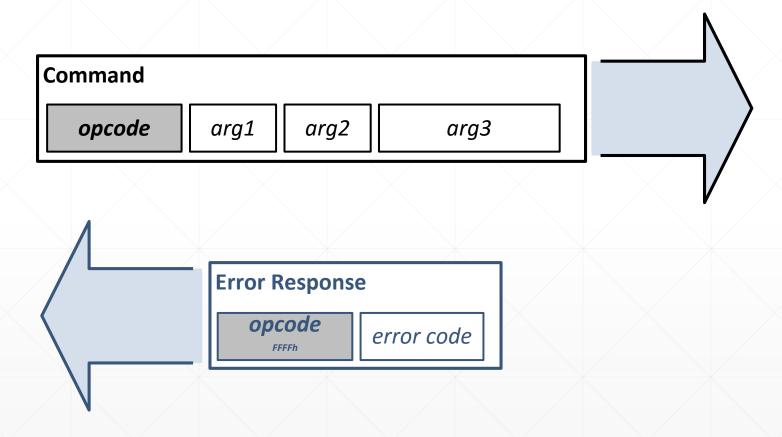

Embedded Development GmbH ist... Engineering and Development

- Embedded Software Entwicklung
- Hardware/Software Co-Design
- Erfahrung aus diversen Branchen


Messages Das Basis Design

Terminal




Device

Messages Das Basis Design

Messages Fehler über generische Error Response

USB als Transport USB Endpunkte

_		Control	Bulk	Interrupt	Isochronous
	Garantierte Bandbreite	Low/Full: 10% High/Super: 20%	*		ull: 90% per: 80%
	Max. Paketgrösse	Low: 8 Full: 64 High: 64 Super: 512	Low: * Full: 64 High: 512 Super: 1024	Low: 8 Full: 64 High: 1024 Super: 1024	Low: * Full: 1023 High: 1024 Super: 1024
	Garantierte Pakete/Zeit	×	*	Low: 1 / 10 ms Full: 1 / ms High: 3 / 125 μs Super: 3 / 125 μs	Low: * Full: 1 / ms High: 3 / 125 μs Sup.: 48 / 125 μs
•	Fehlerkorrektur	✓ ✓	/ /	/ •	*

TCP/IP als Transport Der *IwIP* Stack

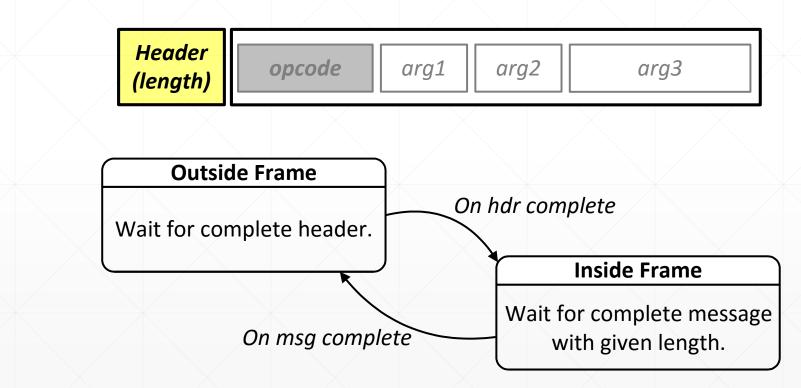
- IwIP (lightweight IP) ist ein Open Source TCP/IP Stack für Embedded Systeme
- Unterstützte Protokolle: ARP, IP, ICMP, UDP, TCP, DNS, DHCP, ...
- Schonender Umgang mit Ressourcen, konfigurierbar per config-Include File
- Ideal für SoCs mit integriertem Ethernet MAC

TCP Transmission Control Protocol Sorgt für Datenintegrität

Verbindungsorientiert

- Client ("Terminal") muss zu Server ("Device") verbinden vor Datenaustausch

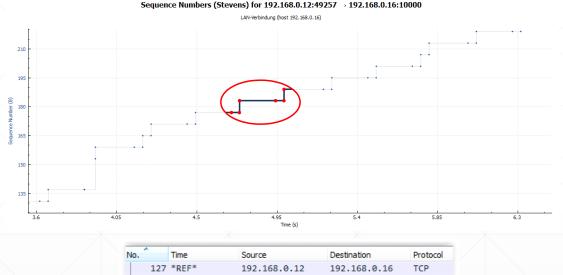
Unterteilung der Daten in Segmente

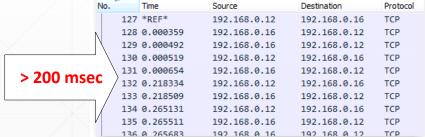

- Müssen vom Empfänger bestätigt werden (acknowledgment)
- Retranmission beim Ausbleiben der Bestätigung
- → reliable byte stream

Datenintegrität

- Prüfsumme über TCP Header und Daten
- → IwIP: TCP ergibt ~50% der *object code size*

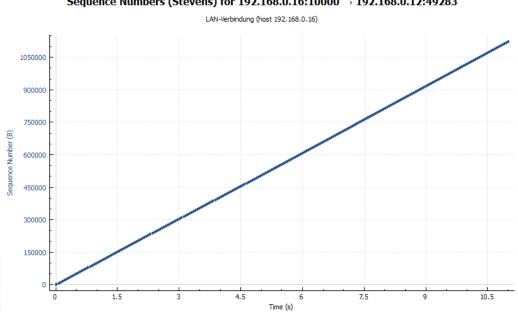
Messages Framing


Der Rahmen um eine Message ist durch den Transport nicht gegeben.



TCP Nagle Algorithmus

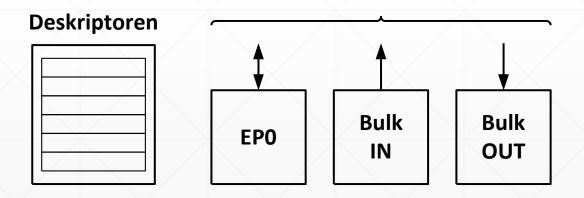
- Kleine Pakete können Netzwerk verstopfen (eher bei WANs als bei LANs)
 Bsp.: 4 Bytes senden = 20 Bytes TCP Header + 20 Bytes IP Header = 44 Bytes
- Algorithmus: wenn eine TCP Verbindung unbestätigte Daten hat, können keine kleinen Segmente geschickt werden, bis die Daten bestätigt sind.
- Kleines Segment: Segment < MSS
 Max. segment size = 1500 40 = 1460 Bytes bei Ethernet


TCP Nagle Algorithmus mit lwlP

tcp_nagle_enable(pcb) (default)

Sequence Numbers (Stevens) for 192.168.0.16:10000 > 192.168.0.12:49283

tcp_nagle_disable(pcb)


TCP Keepalive

- Über eine inaktive TCP Verbindung findet kein Datenaustausch statt
- Etablierte Verbindung zu einem Server bleibt erhalten bis Close
- Deshalb stellen TCP Implementierungen Keepalive zur Verfügung
- Mittels Timer überprüft der Stack Inaktivität der Verbindungen
 → Senden von Probe Segmenten bei Inaktivität
- Nötig für Management Schnittstelle damit das Device (= TCP Server) die Ressourcen wieder freigeben kann

```
#if LWIP_TCP_KEEPALIVE
newPcb->so_options |= SOF_KEEPALIVE;
newPcb->keep_idle = 5000;
newPcb->keep_intvl = 5000;
newPcb->keep_cnt = 3;
#endif // LWIP_TCP_KEEPALIVE
```

USB als Transport Vendor Class

- Selbstdefinierte Geräte
- Device Management Schnittstelle:
 - 1 Bulk OUT Endpunkt für Message Senden
 - 1 Bulk IN Endpunkt für Message Empfangen

USB als Transport Verifikation mit USB Analysator (on wire)

Sp	m:s.ms.us	Len	Err	Dev	Ер	Record	Summary	
	0:00.000.000					 Capture started (Aggregate) 	[02/10/16 19:19:31]	
	0:00.000.545					<manual trigger=""></manual>		
FS 🕏	0:04.676.426	18 B		12	00	▷	Index=0 Length=18	
FS 🕏	0:04.676.759	32 B		12	00	 Get Configuration Descriptor 	Index=0 Length=255	
FS \$	0:04.676.759	8 B		12	00	▷ 🧊 SETUP txn	80 06 00 02 00 00 FF 00	50 #4
FS \$	0:04.676.836	16 B		12	00	▷ 🥏 IN txn	09 02 20 00 01 01 00 80 32 09 04 00 00 02 FF 00	EP #1 = Bulk IN
FS \$	0:04.676.866	16 B		12	00	▷ 🥏 IN txn	00 00 07 05 81 02 40 00 00 07 05 02 02 40 00 00	EP #2 = Bulk OUT
FS 🕏	0:04.676.891	0 B		12	00	▷ 🧊 IN txn		
FS 🕏	0:04.676.922	0 B		12	00			
FS 🕏	0:04.677.941	4 B		12	00	▷	Index=0 Length=255	
FS 🕏	0:04.678.621	18 B		12	00	▷ ☐ Get String Descriptor	Index=2 Length=255	
FS 🕏	0:04.686.836	18 B		12	00	▷	Index=0 Length=18	
FS 🕏	0:04.687.605	9 B		12	00	Get Configuration Descriptor	Index=0 Length=9	
FS 🕏	0:04.688.594	32 B		12	00	Get Configuration Descriptor	Index=0 Length=32	
FS 🕏	0:04.689.585	2 B		12	00	▷		
FS \$	0:04.695.099	0 B		12	00	▷	Configuration=1	
FS \$	0:09.470.336	6 B		12	02	DOUT txn	02 00 FD FF 00 F0	
FS \$	0:09.471.762	64 B		12	01	▷ 🥏 IN txn	50 00 AF FF 00 F0 03 00 0A 00 15 11 00 42 75 69 6	C 64 20 69 6E 66 6F 72
FS \$	0:09.471.836	20 B		12	01	▷ 🥏 IN txn	54 65 6D 70 65 72 61 74 75 72 65 20 32 03 00 C2 B	0 43 02 01
FS \$	0:09.479.764	6 B		12	02	OUT txn	02 00 FD FF 03 F0	
FS \$	0:09.479.764	3 B		12	02	OUT packet	E1 0C 71	
FS \$	0:09.479.768	9 B		12	02	DATA1 packet	4B 02 00 FD FF 03 F0 FF 2E	
FS 🕏	0:09.479.775	1 B		12	02	✓ ACK packet	D2	
FS 🕏	0:09.479.988	10 B		12	01	▷ 🥏 IN txn	06 00 F9 FF FF FF 06 00 00 00	
rc 4	0.00 400 004	44 D		40	00	A OUT too	03 00 00 00 01 00 02 00 03 00 14 00 15 00	

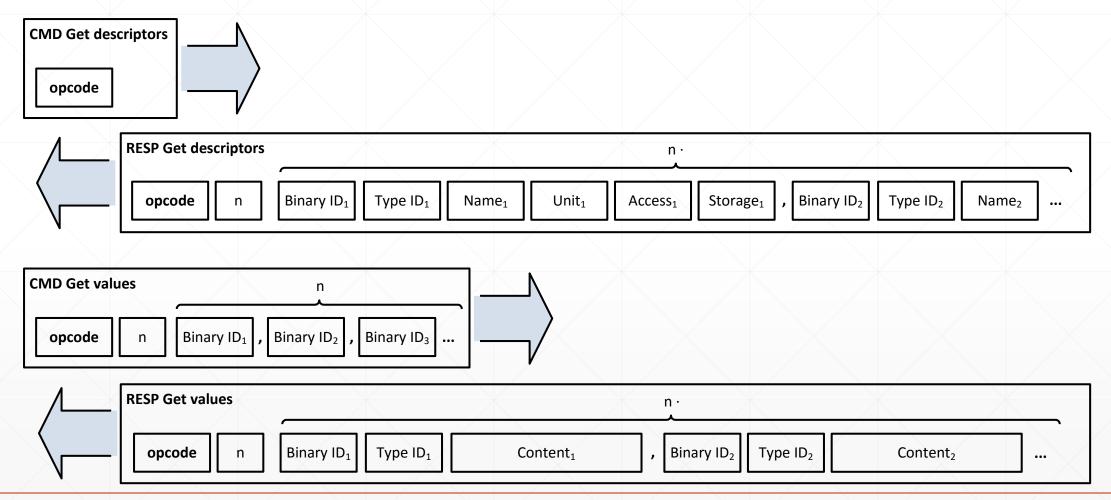
Generische Parameter Beschreibungen, Datentypen

- Parameter haben abfragbare Beschreibungen (Deskriptoren)
- Parameter haben Datentypen, zum Beispiel:

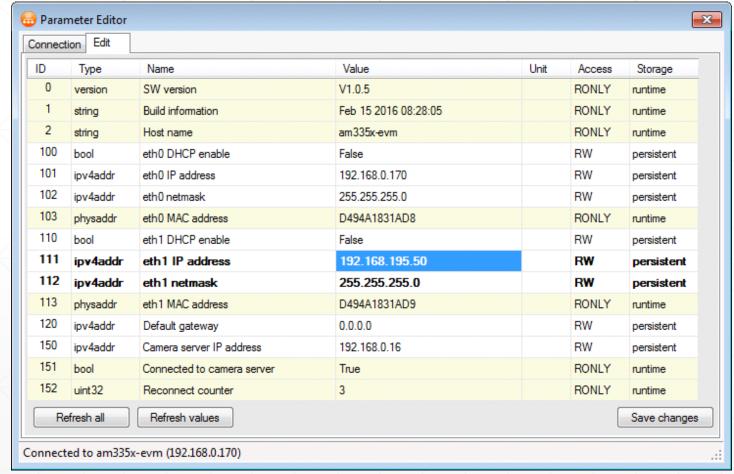
C99 Integers #include <stdint.h> uint8_t, int8_t, uint16_t, int16_t, uint32 t, int32 t, uint64 t, int64 t

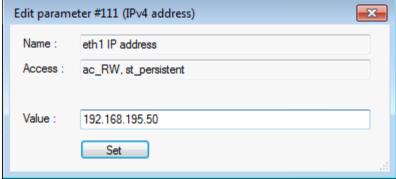
IEEE754 Floating Point Single precision (32-bit) Double precision (64-bit)

Kommunikation **IPv4** Adresse Physikalische Adresse

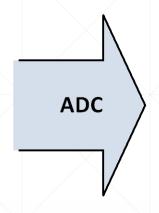

Boolean	
String	
Version	

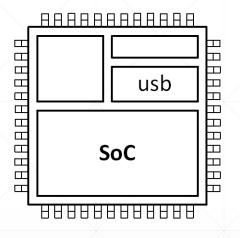
Nützliches

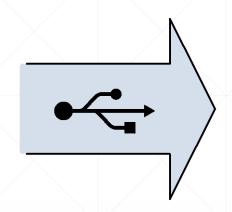

GUID (128-bit oder 96-bit)


Zeit DateTime TimeSpan

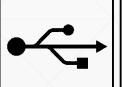
Generische Parameter Die Schnittstelle

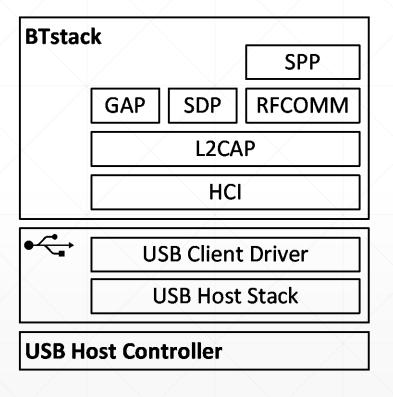

Generische Parameter Der Editor



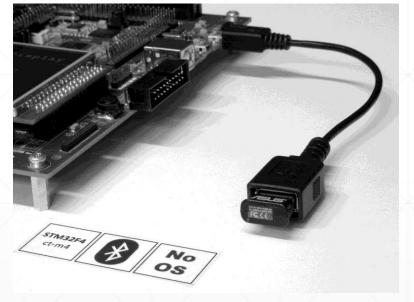



Demo 1 USB T-Sensor



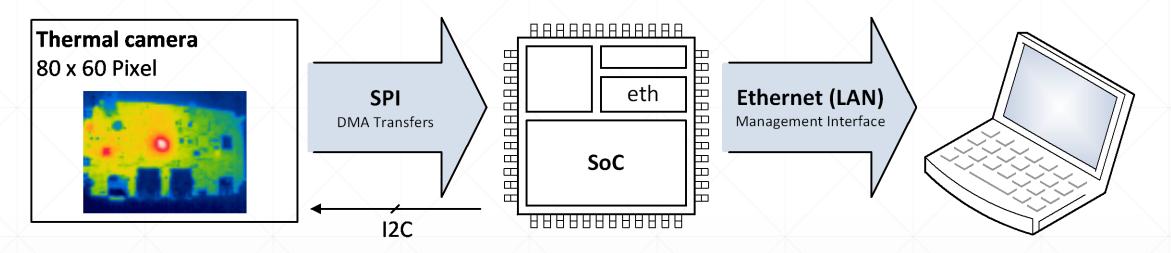

ID	Туре	Name	Value		Access	Storage
0	version	SW version	V1.0.0		RONLY	runtime
1	string	Build information	Feb 19 2016 21:45:57		RONLY	runtime
20	bool	Sensor 1 present	True		RONLY	runtime
21	int16	Temperature 1	189	0.1 ℃	RONLY	runtime
22	bool	Sensor 2 present	True		RONLY	runtime
23	int16	Temperature 2	189	0.1 ℃	RONLY	runtime

FSL KL25 ct-m0+


No OS

Demo 2 Bluetooth Display

- Portierbarer BT Stack
- Für HCl Chipsets
- Bluetooth SIG qualifiziert

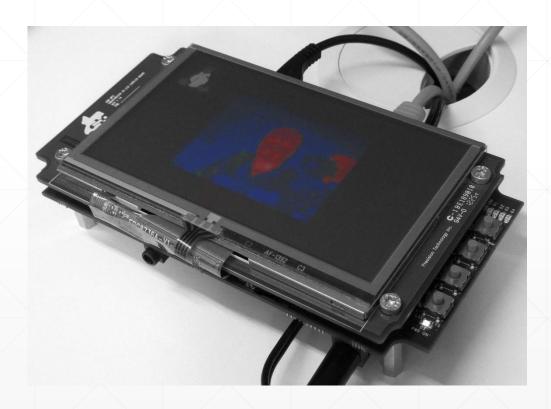


STM32F4 ct-m4

No OS

Demo 3 Wärmebild Kamera über LAN

ID	Туре	Name	Value	Unit	Access	Storage
0	version	SW version	V1.0.0		RONLY	runtime
1	string	Build information	Feb 29 2016 17:26:24		RONLY	runtime
20	float32	Camera frame rate	25.94034	fps	RONLY	runtime
21	uint32	Camera uptime	1599893	msec	RONLY	runtime
22	float32	T_aux	23.19	°C	RONLY	runtime
23	float32	T_fpa	27.41	°C	RONLY	runtime


STM32F7 ct-m7

Demo 4 Terminal für Wärmebild Kamera über LAN

Terminal: Client für Wärmebild Kamera Server

TI AM335x ct-a8

Fragen?

Embedded Development GmbH www.embedded-development.ch

Peter Voser
077 405 70 05 Mobile
peter.voser@voser-development.ch